Strategie peritrapiantologiche di management del paziente candidato a trapianto allogenico di CSE con colonizzazione da germi multiresistenti

Corrado Girmenia Ematologia, Azienda Policlinico Umberto I Sapienza University of Rome, Italy

CORSO EDUCAZIONALE GITMO

Controversie nel Trapianto di Cellule Staminali Emopoietiche

BARI 6-7 Giugno 2017

Colonization in the management of MDR Gram-negative infections

Is colonization predictive of infection?

How to detect colonized subjects?

Is decontamination of colonized subjects a possible strategy?

Management of colonized subjects > In the interest of the community > In the interest of the patient

Colonization in the management of MDR Gram-negative infections

Is colonization predictive of infection?

How to detect colonized subjects?

Is decontamination of colonized subjects a possible strategy?

Management of colonized subjects > In the interest of the community > In the interest of the patient ECCMID 2013; eP698 **Prospective, cross-sectional observational study of hospitalised patients colonised with carbapenemase resistant Klebsiella pneumoniae (CR-KP)** M. Bartoletti et al (Bologna, IT)

To compare the incidence and outcome of CR-KP infections among patient cohorts

- Incidence N/1000 colonization days
 - medicine :4.3
 - Hematology 26.3
 - ICU: 13.1
 - Surgical: 8.6
 - SOT: 7.4
 - Long Term Care: 4.7

Medicine departments: Lowest risk of infection in CRKp colonized Lowest risk of death in CRKp infections

- KPC-attributable mortality
 - Hematology:75%
 - ICU:11%
 - SOT:7%
 - LTC: 5%
 - Medicine: 2%
 - Surgery:2%

- In low risk departments CR-KP may be perceived as a clinically not relevant phenomenon.
- Low risk departments may represent the occult reservoir of CR-KP!!!!

npg

ORIGINAL ARTICLE Infections by carbapenem-resistant *Klebsiella pneumoniae* in SCT recipients: a nationwide retrospective survey from Italy

C Girmenia¹, GM Rossolini^{2,3,4}, A Piciocchi⁵, A Bertaina⁶, G Pisapia⁷, D Pastore⁸, S Sica⁹, A Severino¹⁰, L Cudillo¹¹, F Ciceri¹², R Scimè¹³, L Lombardini¹⁴, C Viscoli¹⁵, A Rambaldi¹⁶ and the Gruppo Italiano Trapianto Midollo Osseo (GITMO)¹⁷

A CRKp infection without previously documented colonization occurred in 10 autologous and 22 allogeneic SCT recipients

npg

ORIGINAL ARTICLE

Infections by carbapenem-resistant *Klebsiella pneumoniae* in SCT recipients: a nationwide retrospective survey from Italy

C Girmenia¹, GM Rossolini^{2,3,4}, A Piciocchi⁵, A Bertaina⁶, G Pisapia⁷, D Pastore⁸, S Sica⁹, A Severino¹⁰, L Cudillo¹¹, F Ciceri¹², R Scimè¹³, L Lombardini¹⁴, C Viscoli¹⁵, A Rambaldi¹⁶ and the Gruppo Italiano Trapianto Midollo Osseo (GITMO)¹⁷

The risk was not calculated for other resistant pathogens because the rate of colonization was very low

bacterial infections after

Incidence, risk factors and outcome of pre

hematopoietic stem cell

prospective multicenter

survey

transplantation: an Italian

engraftment Gram negative allogeneic and autologous

AMCLI

Probability of survival was not calculated for other pathogens because the number of episodes was very low

Colonization in the management of MDR Gram-negative infections

Is colonization predictive of infection?

How to detect colonized subjects?

Is decontamination of colonized subjects a possible strategy?

Management of colonized subjects > In the interest of the community > In the interest of the patient

Detection of potential carriers

- PCR : investigational, not applicable il the 'real life'
- Surveillance cultures (directly by rectal swab)
 - MacConkey plates supplemented with antibiotics
 - Imipenem for KPC
 - cefotaxime and/or ceftazidime for ESBL
 - MacConkey plates with carbapenem disks for KPC and ceftazidime for ESBL
 - Chomogenic agar for ESBL and KPC

Also P.aeruginosa grows in MacConkey agar

Susceptible to ceftazidime susceptible to meropenem: susceptible to batalactams

MEM

CAZ

Resistant to ceftazidime and to meropenem: suspect of KPC or other MDR

CHROMagar™ ESBL

Packaging / Colonies appearance

For overnight detection of Gram-negative bacteria producing Extended Spectrum Beta-Lactamase.

Typical Appearance of microrganisms

E.coli ESBL \rightarrow Dark pink to reddish Sensitive Gram negative strains \rightarrow inhibited Klebsiella, Enterobacter, Citrobacter → metallic blue Proteus \rightarrow brown halo

Order References

Please use these references when contacting your local distributor: Product = base powder CHROMagar Orientation + CHROMagar ESBL Supplement

5000ml ESRT2 (base powder ref:RT412 + supplement ref:ES372) 25L ESRT3-25 (base powder ref:RT413-25 + supplement ref:ES373-25)

For Detection of gram-negative bacteria with a reduced susceptibility to most of the carbapenem agents.

Typical Appearance of microrganisms

E.coli CarbapenemR -> Dark pink to reddish Klebsiella, Enterobacter, Citrobacter CarbapenemR → Metallic blue Pseudomonas CarbapenemR → Cream, translucent Other bacteria → Usually inhibited

Order References

Please use these references when contacting your local distributor: Product = base powder CHROMagar Orientation + CHROMagar KPC supplement

5000ml..... KPRT2 (base powder ref:RT412 + supplement ref:KP102) 25L..... KPRT3-25 (base powder ref:RT413-25 + supplement ref:KP103-25)

Management of carbapenem resistant *klebsiella pneumoniae* infections in stem cell transplant recipients: an italian multidisciplinary consensus statement

by Corrado Girmenia, Claudio Viscoli, Alfonso Piciocchi, Laura Cudillo, Stefano Botti, Antonio Errico, Loredana Sarmati, Fabio Ciceri, Franco Locatelli, Maddalena Giannella, Matteo Bassetti, Carlo Tascini, Letizia Lombardini, Ignazio Majolino, Claudio Farina, Francesco Luzzaro, Gian Maria Rossolini, and Alessandro Rambaldi

Prior to hospital admission

Weekly if other colonized patients in the transplant unit or history of CRKp

In patients with other intestinal complications

In patients from endemic areas

• Timing of monitoring.

° Transplant centers located in settings with known significant CRKp spread.

° ° Monitoring of CRKp colonization is strongly recommended as part of the microbiological pre-transplant evaluation - prior to hospital admission - in both autologous and allogeneic SCT (AII). In patients not colonized, weekly post-transplant monitoring is indicated in the event of CRKp isolation from other patients in the same unit (AII). Patients with post-transplant intestinal complications, in particular Graft-versus-Host Disease, should undergo fecal culture including examination for CRKp AII). A rectal swab should be repeated in patients who were not colonized and are re-hospitalized for post-transplant complications (AIII). CRKp colonized patients should be considered as persistent carriers regardless of the results of the subsequent cultures, thus rendering strict post-transplant monitoring as being no longer required (**BIII**). However, monitoring of the colonization status may be considered in patients with a previous CRKp isolation in order to document a decolonization and redefine the infection control strategy. Indeed, it is difficult to define the time after which a definitive decolonization can be established.

Transplant centers located in settings without significant CRKp spread.

^o Monitoring of CRKp colonization before or after SCT is not required (**BIII**). However, pre-transplant monitoring is recommended for patients transferred from CRKp endemic areas or in whom possible contact with the microorganism cannot be excluded, not only in the best interest of the patient, but also as part of hospital infection control measures (**AII**).

Colonization in the management of MDR Gram-negative infections

Is colonization predictive of infection?

How to detect colonized subjects?

Is decontamination of colonized subjects a possible strategy?

Management of colonized subjects
> In the interest of the community
> In the interest of the patient

Published Ahead of Print on April 10, 2015, as doi:10.3324/haematol.2015.125484. Copyright 2015 Ferrata Storti Foundation.

Management of carbapenem resistant *klebsiella pneumoniae* infections in stem cell transplant recipients: an italian multidisciplinary consensus statement

by Corrado Girmenia, Claudio Viscoli, Alfonso Piciocchi, Laura Cudillo, Stefano Botti, Antonio Errico, Loredana Sarmati, Fabio Ciceri, Franco Locatelli, Maddalena Giannella, Matteo Bassetti, Carlo Tascini, Letizia Lombardini, Ignazio Majolino, Claudio Farina, Francesco Luzzaro, Gian Maria Rossolini, and Alessandro Rambaldi

Table 2. Oral decontamination for Carbapenem-resistant Enterobacteriaceae in general population and patients with hematologic malignancies.

Author (Reference)	Drugs	Study	N° patients included	N° (%) pts decontaminated	Pts with HM±SCT	N (%) G resistant strai	Follow-up
Zuckerman <i>et al.</i> ⁵	GO	Observational	15	10/15 (66%)	15	0	30-300 days
Tascini <i>et al.</i> ⁵	GO	Prospective	50	34/50 (68%)	2	4/16 (25%) persisters	180 days
Saidel-Odes <i>et al.</i> ™	GCO1	Randomized Double Blind	20 GCO1 20 controls	12/20 (60%) GCO1; 3/20 (15%) controls	0	0	45 days
Oren <i>et al</i> .¹⁵	GO; CO2; GCO2	Semirandomized prospective plus controls	26 GO; 16 CO2; 8 GCO2 102 controls	11/26 (42%) GO; 8/16) 50% CO2; 3/8 (37%) GCO2; 7/102 (7%) controls	15 GO 15 CO2 4 GCO2 12 controls	6/15 (40%) persisters	31-140 days
Lubbert <i>et al.</i> ¹⁴	GCO1	Observational plus controls	14 GCO1; 76 controls	6/14 (43%) GCO1; 23/76 (30%) controls	0	5/11 (45%)	48-53 days
Total	-	-	149 treated; 198 controls	84/149 (56%) treated; 33/198(16%) controls	51 treated 12 controls	13/42 (30%)	

CRE: Carbapenem-resistant Enterobacteriaceae; G: gentamicin; GO: oral gentamicin (80 mg q.i.d.); CO2: oral colistin 2MU q.i.d.; GCO2: oral gentamicin (80 mg q.i.d.) plus oral colistin 1 MU q.i.d; HM±SCT: hematologic malignancies ± stem cell transplantation.

Decontamination of patients colonized by MDR Gram-neg bacteria

- The efficacy of a decontamination strategy has not been demonstrated in hematologic and HSCT pts
- The use of molecules active in therapy is questionable
- In other populations decontamination was not effective during systemic antibiotic therapy
- Relapse is frequent
- Clinical trials are required (i.e. fecal transplant)

Colonization in the management of MDR Gram-negative infections

Is colonization predictive of infection?

How to detect colonized subjects?

Is decontamination of colonized subjects a possible strategy?

Management of colonized subjects

In the interest of the community
In the interest of the patient

Why detection of MDR Gram-neg carriers is important?

- For the interest of the community:
 - Carriers are the main source of MDR bacteria spread, particularly for enterobacteria
 - Prevention of infection transmission is a cornerstone of any «infection control» strategy
- For the interest of the patient:
 - Colonization is highly predictive of invasive infection
 - Is colonization a contraindication to transplant?
 - Tailored management based on colonization data

RESEARCH ARTICLES

Long-term control of carbapenemase-producing Enterobacteriaceae at the scale of a large French multihospital institution: a nine-year experience, France, 2004 to 2012 Eurosurveillance 2014

S Fournier (sandra.fournier@sap.aphp.fr)¹, C Monteil¹, M Lepainteur¹, C Richard², C Brun-Buisson³, V Jarlier⁴, AP-HP Outbreaks Control Group⁵

Resistance of Klebsiella pneumoniae Isolates to Carbapenems in Italy, France, Greece, Spain and Austria, 2009 - 2015 -

Country	Year	Total N	%R
Austria	2009	463	0.0 %
	2010	509	0.6 %
	2011	610	0.2 %
	2012	738	0.8 %
	2013	910	1.2 %
	2014	971	0.6 %
	2015	1022	0.8 %
France	2009	1268	0.2 %
	2010	1432	0.1 %
	2011	1640	0.0 %
	2012	1627	0.5 %
	2013	1842	0.7 %
	2014	2013	0.5 %
	2015	2244	0.5 %
Spain	2009	575	0.2 %
	2010	1161	0.0 %
	2011	1144	0.3 %
	2012	1152	0.8 %
	2013	1241	1.6 %
	2014	1266	2.3 %
	2015	1483	2.2 %

Country	Year	Total N	%R
Greece	2009	1627	43.5 %
	2010	1687	49.1 %
	2011	1636	68.2 %
	2012	1460	60.5 %
	2013	1209	59.4 %
	2014	1088	62.3 %
	2015	1185	61.9 %
Italy	2009	304	1.3 %
	2010	731	15.2 %
	2011	615	26.7 %
	2012	845	29.1 %
	2013	1453	34.3 %
	2014	1315	32.9 %
	2015	1999	33.5 %

Containment of a Country-wide Outbreak of Carbapenem-Resistant *Klebsiella pneumoniae* in Israeli Hospitals via a Nationally Implemented Intervention Clinical Infectious Diseases 2011;52(7):848–855

Mitchell J. Schwaber,¹ Boaz Lev,² Avi Israeli,² Ester Solter,¹ Gill Smollan,¹ Bina Rubinovitch,¹ Itamar Shalit,¹ Yehuda Carmeli,¹ and the Israel Carbapenem-Resistant Enterobacteriaceae Working Group^a

¹National Center for Infection Control, Israel Ministry of Health, Tel Aviv, and ²Israel Ministry of Health, Jerusalem, Israel

- 2006: several Israeli hospitals faced a clonal outbreak of CRKp that was not controlled by local measures.
- March 2007: the Israeli Ministry of Health launched a nationwide intervention and issued guidelines mandating
 - patient and staff cohorting
 - professional task force
 - site visits at acute-care hospitals,
 - evaluated infection-control policies and laboratory methods
 - supervised adherence to the guidelines
 - provided daily feedback on performance to hospital directors
 - made additional interventions when and where necessary.

Containment of a Country-wide Outbreak of Carbapenem-Resistant *Klebsiella pneumoniae* in Israeli Hospitals via a Nationally Implemented Intervention

Mitchell J. Schwaber,¹ Boaz Lev,² Avi Israeli,² Ester Solter,¹ Gill Smollan,¹ Bina Rubinovitch,¹ Itamar Shalit,¹ Yehuda Carmeli,¹ and the Israel Carbapenem-Resistant Enterobacteriaceae Working Group^a ¹National Center for Infection Control, Israel Ministry of Health, Tel Aviv, and ²Israel Ministry of Health, Jerusalem, Israel 70 _¬ Launch of intervention Professional task force supervision help!!!! 19% relative reduction of the incidence

compared with the previous year

Clinical Infectious Diseases 2011;52(7):848–855

Published Ahead of Print on April 10, 2015, as doi:10.3324/haematol.2015.125484. Convright 2015 Ferrata Storti Foundation

Why detection of MDR Gram-neg carriers is important?

- For the interest of the community:
 - Carriers are the main source of MDR bacteria spread, particularly for enterobacteria
 - Prevention of infection transmission is a cornerstone of any «infection control» strategy
- For the interest of the patient:
 - Colonization is highly predictive of invasive infection
 - Is colonization a contraindication to transplant?
 - Tailored management based on colonization data

Management of carbapenem resistant *klebsiella pneumoniae* infections in stem cell transplant recipients: an italian multidisciplinary consensus statement

by Corrado Girmenia, Claudio Viscoli, Alfonso Piciocchi, Laura Cudillo, Stefano Botti, Antonio Errico, Loredana Sarmati, Fabio Ciceri, Franco Locatelli, Maddalena Giannella, Matteo Bassetti, Carlo Tascini, Letizia Lombardini, Ignazio Majolino, Claudio Farina, Francesco Luzzaro, Gian Maria Rossolini, and Alessandro Rambaldi

> Colonization is not a contraindication to transplant

If possible consider delay of transplant

The choice of conditioning regimen or stem scell source with a reduced infectious risk may be considered Impact of the CRKp issues on patients eligibility for SCT and on SCT strategies

• Pre-transplant CRKp colonization does not represent *per se* an absolute contraindication to both autologous and allogeneic-SCT (**AII**). In patients who do not require urgent SCT, transplantation may be delayed to allow for CRKp decolonization (**AIII**).

• In patients with recent CRKp infection before SCT – a condition with a high-risk of an early, life-threatening relapse after transplant – careful evaluation of the risk-benefit ratio for performing SCT is necessary. For this particular condition, transplantation may be contraindicated in favor of a less intensive therapeutic choice, or postponed (**BIII**).

• With regard to transplant procedures there is no contraindication for any type of autologous-SCT in CRKp carriers. As for allogeneic-SCT, the choice of conditioning regimen or stem cell source associated with a reduced infectious risk (engraftment time is generally shorter with peripheral stem cells as compared to bone marrow and cord blood) may be considered. However, no recommendation can be actually given and the decision remains at the discretion of the attending team.

ORIGINAL ARTICLE

Infections by carbapenem-resistant *Klebsiella pneumoniae* in SCT recipients: a nationwide retrospective survey from Italy

C Girmenia¹, GM Rossolini^{2,3,4}, A Piciocchi⁵, A Bertaina⁶, G Pisapia⁷, D Pastore⁸, S Sica⁹, A Severino¹⁰, L Cudillo¹¹, F Ciceri¹², R Scimè¹³, L Lombardini¹⁴, C Viscoli¹⁵, A Rambaldi¹⁶ and the Gruppo Italiano Trapianto Midollo Osseo (GITMO)¹⁷

Table 2. Probability of OS at 3 months from CRKp infection in 87 allo-SCT patients					
	OS, %	Univariate		Multivariate	
		HR (95% CI)	Ρ	HR (95% CI)	Р
Male vs female	28 vs 32	1.04 (0.62-1.73)	0.88		
Age, ≤43 years vs >43 years	37 vs 22	0.67 (0.40-1.10)	0.11	0.59 (0.34-1.01)	0.056
Underlying disease, acute leukemia vs others	27 vs 35	1.30 (1.30-0.76)	0.33		
Status of the underlying disease at transplant, CR/stable vs active	36 vs 18	0.56 (0.33-0.44)	0.03	0.61 (0.35-1.06)	0.080
CRKp infection during the 3 months before transplant, no vs yes	32 vs 10	0.51 (0.25-1.04)	0.06	0.33 (0.15-0.74)	0.007
Myeloablative conditioning, yes vs no	29 vs 32	1.22 (0.74-2.03)	0.44		
Donor type					
Matched related vs mismatched related or unrelated volunteer donor or cord blood	31 vs 28	0.95 (0.56-1.61)	0.85		
Level of CRKp infection documentation, proven vs probable	31 vs 20	0.89 (0.42-1.87)	0.76		
Time of onset of the infection after transplant, \leq 40 days vs $>$ 40 days	34 vs 22	0.94 (0.56-1.56)	0.80		
Neutrophil count at the time of infection, $<$ 500/cmm vs \ge 500/ cmm	29 vs 32	1.5 (0.88–2.61)	0.13		
Acute grade II-IV or chronic severe GVHD at the time of infection, no vs ves	33 vs 22	0.98 (0.58-1.66)	0.94		
First-line antibiotic therapy, not CRKp-targeted vs CRKp-targeted	21 vs 45	1.76 (1.05–3.10)	0.04	2.67 (1.43-4.99)	0.002
Abbreviations: CI = confidence interval; CRKp = carbapenem-resistant K. pneumoniae; HR = hazard ratio; OS = overall survival.					

Bone Marrow Transplantation (2014), 1–7 © 2014 Macmillan Publishers Limited All rights reserved 0268-3369/14 www.nature.com/bmt

ORIGINAL ARTICLE

Infections by carbapenem-resistant *Klebsiella pneumoniae* in SCT recipients: a nationwide retrospective survey from Italy

C Girmenia¹, GM Rossolini^{2,3,4}, A Piciocchi⁵, A Bertaina⁶, G Pisapia⁷, D Pastore⁸, S Sica⁹, A Severino¹⁰, L Cudillo¹¹, F Ciceri¹², R Scimè¹³, L Lombardini¹⁴, C Viscoli¹⁵, A Rambaldi¹⁶ and the Gruppo Italiano Trapianto Midollo Osseo (GITMO)¹⁷

Prevention of colonization is the «cornerstone» of CRKp infection-control

RESEARCH ARTICLE

Open Access

Carbapenem-resistant *Klebsiella pneumoniae* in high-risk haematological patients: factors favouring spread, risk factors and outcome of carbapenemresistant *Klebsiella pneumoniae* bacteremias

Alessandra Micozzi^{1*}, Giuseppe Gentile¹, Clara Minotti², Claudio Cartoni², Saveria Capria², Daniele Ballarò¹, Stefania Santilli², Emanuele Pacetti¹, Sara Grammatico¹, Giampaolo Bucaneve³ and Robin Foà¹

Published Ahead of Print on April 10, 2015, as doi:10.3324/haematol.2015.125484. Copyright 2015 Ferrata Storti Foundation.

Management of carbapenem resistant *klebsiella pneumoniae* infections in stem cell transplant recipients: an italian multidisciplinary consensus statement

by Corrado Girmenia, Claudio Viscoli, Alfonso Piciocchi, Laura Cudillo, Stefano Botti, Antonio Errico, Loredana Sarmati, Fabio Ciceri, Franco Locatelli, Maddalena Giannella, Matteo Bassetti, Carlo Tascini, Letizia Lombardini, Ignazio Majolino, Claudio Farina, Francesco Luzzaro, Gian Maria Rossolini, and Alessandro Rambaldi

Susceptibility pattern of the colonizing isolate

At least two active agents

Standard empiric antibiotic therapy discouraged in patients with colonization by MDR bacteria • CRKp carriers, at onset of febrile neutropenia or other signs of possible infection.

° CTAT based on the susceptibility pattern of the colonizing isolate with the inclusion of at least two active agents, if possible, is strongly recommended (AII).

^o The use of standard empiric antibiotic therapy, not including CRKpactive drugs, is discouraged (**AII**).

° In SCT centers with an ongoing outbreak of CRKp, the choice of empiric CTAT may be considered also in febrile patients who are not colonized, or with an unknown colonization status. (**BII**). Prompt withdrawal of CTAT with downgrading to more traditional drugs is recommended if cultures come back negative for CRKp, also taking into consideration the clinical findings (**AII**).

Consider active empiric therapy also in noncolonized patients during an ongoing outbreak

The choice of antibiotic therapy in patients colonized by MDR Gram-neg bacteria

- Detailed susceptibility (MIC) of the colonizing isolate is required
- Antibiotics (high doses) against isolates with MICs over the breackpoint may be used but a certain activity is needed:
 - Colistin \leq 4 mcg/ml (S \leq 2 mcg/ml)
 - Meropenem \leq 16-32 mcg/ml (S \leq 2 mcg/ml)
 - Tygeciclin ≤ 4 (S $\leq 1 \text{ mcg/ml}$)
 - Fosfomycin ?? (S ≤ 32 mcg/ml
 - Gentamycin $\leq 4 \text{ mcg/ml} (S \leq 2 \text{ mcg/ml})$
- The appropriate antibiotic therapy should be defined in colonized patients before the onset of a febrile episode.

The role of fluoroquinolone prophylaxis in an era of MDR Gram-neg bacteria

- Is fluoroquinolone decontamination still effective in the prevention of Gram-neg infections?
- Can a fluoroquinolone decontamination effect favouring the emergence of MDR Gram-negative bacteria be excluded?

AMC

associatione

microbiologi

clinici italiani

Incidence, risk factors and outcome of pre engraftment Gram negative bacterial infections after allogeneic and autologous hematopoietic stem cell transplantation: an Italian prospective multicenter survey. (ClinicalTrials.gov, ID NCT02088840)

Risk factors for pre-engraftment Gram negative infections

Multivariate analysis

A	Allo-HSCT	Auto-HSCT		
Variable	HR (95% CI), p	Variable	HR (95% <i>C</i> I), p	
Age (+10y)	1.15 (1.05-1.25), 0.016	Age (+10y)	1.18 (1.05-1.33), 0.006	
Other diseases vs acute leukemia	0.64 (0.46-0.89), 0.009	Lymphoma vs other diseases	1.84 (1.31-2.61), 0.0005	
Donor MMR MMU CB	3.74 (2.15-6.50), <0.0001 2.91 (1.50-5.64), 0.001 3.77 (1.50-9.45), 0.005	Antibacterial prophylaxis vs no prophylaxis	0.46(0.32-0.68), <0.0001	
Days of pre- engraftment neutropenia	1.02 (1.01-1.03), 0.0004			

Possible effects of fluoroquinolones intestinal decontamination in high risk patients

Possible effects of fluoroquinolones intestinal decontamination in high risk patients

Ciprofloxacin prophylaxis in neutropenic allo-HSCT recipients: a placebo-controlled study

- **Background**: ciprofloxacin is no more effective in the prevention of Gram-neg infections
- **Objective**: non inferiority of placebo vs ciprofloxacin

- Background: ciprofloxacin may favour infections by MDR Gram-neg bacteria
- Objective: superiority of placebo vs ciprofloxacin